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Abstract

A general solution procedure is proposed for plane-stress problems of circular plates constructed from piezother-
moelastic material. Potential functions are introduced in order to uncouple the equations governing equilibrium and
electrostatics. The present formulation is applicable to plates having arbitrary edge conditions. Solutions are derived for
plates having either radially constrained or traction-free edges and subjected to axisymmetric surface heating. Nu-
merical results illustrate the effects of plate thickness and variations in material properties upon the induced elastic
displacements, stresses, electric potential and electric displacements. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Increased interest in piezothermoelasticity during recent years can be attributed to the fact that piezo-
electric materials have potential for use in intelligent structural systems, including systems designed to
operate in thermal environments. The coupling that exists between the thermal/elastic/electric fields in
piezoelectric bodies provides a mechanism for sensing and controlling thermomechanical deformation. In
order for the potential of piezoelectric-based intelligent structures to be fully realized, further research is
needed.

Investigations that have dealt with the response of plates constructed of piezoelastic materials include
applications based upon classical (Lee, 1990), first-order (Chandrashekhara and Agarwal, 1993), and
higher-order (Ray et al., 1993a; Mitchell and Reddy, 1995; Saravanos et al., 1997; etc.) deformation the-
ories. Exact solutions for simply-supported hybrid laminates containing piezoelectric layers have been
presented by Ray et al. (1993b) and Heyliger (1994).

In addition to the aforementioned investigations that considered isothermal conditions, a number of
studies have addressed thermoelectroelastic plate response. Equations governing linear piezothermoelastic
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behavior were presented first by Mindlin (1961). Tiersten (1971) derived a general nonlinear theory of
thermoelectroelasticity. In recent years the response of piezothermoelastic plates to thermal loading has been
analyzed on the basis of classical (Tauchert, 1992; Noda and Kimura, 1998), first-order (Jonnalagadda et al.,
1994), higher-order (Reddy, 1996; Tang et al., 1996; etc.), and exact three-dimensional (Xu et al., 1995; Dube
et al., 1996; Kapuria et al., 1998) formulations. A review of these and other recent developments in this area,
particularly those related to smart composite structures, was presented by Tauchert et al. (2000).

As an alternative to two-dimensional plate theories based upon simplifying assumptions regarding
through-thickness distributions of displacements, a plane-stress formulation was considered by Ashida and
Tauchert (2000). They derived an exact solution to the plane problem of a circular piezothermoelastic plate
constrained against radial deformation and subjected to axisymmetric heating, and compared the plane-
stress results with those based on an exact three-dimensional solution (Ashida and Tauchert, 1998). The
present paper extends the earlier investigation by providing a general solution procedure for plane-stress
problems of a circular piezothermoelastic plate having arbitrary edge conditions and subject to thermal
surface loading. Numerical results for traction-free plates are presented.

2. Governing equations

We consider the response of a piezothermoelastic solid possessing hexagonal material symmetry of class
o6mm. Constitutive equations for the stresses o;;, expressed in cylindrical coordinates, are

O = Cl1&y + C12800 + C136: — el E. — BT
0o = C12&, + C11800 + C136. — €1E, — ﬁlT
0., = C13&, + C13809 + €336, — e3E, — ﬁ%T
Op: = Caqtp; — €4k

Oz = Caaézr — e4E,

O, = (6’11 — 012)8r0/2

where ¢;; are the strain components, E; are the electric field intensities, 7' denotes the temperature rise, ¢;; are
elastic stiffnesses, e; are stress-piezoelectric constants, and f; are stress-temperature coefficients. The strains
&; are related to the displacements u; by

1 1

Epp = Up &g = ; u, + ; Ug.0, &z = Uz,
(2)

&0 = Ug; + — Uz, &z = Uzyp + Uy, &9 = — Uy + U, — —Uyg.
r r ' r
The constitutive relations for the electric field are
D, = e4e, + 1 E,
Dy = eqep, + 1 Ey (3)
D, = ei&, + eregp + €3éz. + m3E. + p3T

where D; are the electric displacement components, 5, are dielectric permittivities, and ps is the pyroelectric
constant.
For a state of plane stress perpendicular to the z-axis

Oz = 0¢0; = Oz = 0 (4)

in which case
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1 e e
bz = — (_Cl3srr — C13800 + e3Ez + ﬁ3T>7 &0 = _4E97 Ear = _4Er (5)
C33 Cy4 Caq
The equations of equilibrium for the state of plane stress are
o, Oy — 0
Orrr + o0 + w =0
’ r
6)
o 240, (
G0, + 0w + 70 =0
r r
and the equation of electrostatics is
D D,
Dr,r + % + Dz,z + 7 =0 (7)

The temperature field is governed by Fourier’s heat conduction equation

1 1 T
Tp+=T,+=5To+ 2T == (8)
r s K

where 22 = A, /7. denotes the ratio of the coefficients of heat conduction in the z and r directions, and « is
thermal diffusivity.

3. General solution technique

A general solution to the plane-stress problem is obtained here by superposition of a piezothermoelastic
(particular) solution and a piezoelastic (complementary) solution. The piezothermoelastic solution is based
upon two displacement potential functions 2 and @ and an electric potential y,, and the formulation is
similar to the less general solution derived earlier by Ashida and Tauchert (2000). The corresponding pi-
ezoelastic solution is expressed in terms of a displacement potential ¢ that is analogous to Love’s function
for isotropic elasticity, and an electric potential y,.

3.1. Solution I

In order to obtain a particular solution to Egs. (6) and (7), the displacement and electric force com-
ponents are expressed in terms of potential functions 2, ® and y, as

Q
U, = Q,ra Uy = _ﬁ; u, = @42
' ©)
X1,0
E = =11, Ey=— V’ ) E, = Xz
The nonzero strains in this case are
Q, Q Q,, Q
& = Q,rr; &po0 = _7+%7 &z = @zza &) = 2( 0 - _20> (10)
r r r I

and the corresponding stresses become
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Q, Q
Op = CIIQ,rr + C12 (T+7%> + Cl3@,zz + ele,z - BlT
Q, @
o0 = c1282 , + 11 (7""700) + Cl3@,zz + €ifiz — ﬂlT (11)
( ) Q,r9 Q,9
o,0=(c;1 —c -
0 11 12 - }"2

Substitution of Eq. (11) into Eq. (6) shows that equilibrium is satisfied providing the potential functions Q,
® and y, satisfy the relation

611A1Q+013@ﬂ: 761%1,z+ﬂ1T (12)
where

? 12 1@

M= oS O
! 6r2+r6r+r2692

(13)

The electric displacements are, according to Eqgs. (3) and (5),

2 2\ 4
n €\ Lo
- +— ,, Dy =— +— | —
(’71 c44>X1‘ 0 (’h c44> - (14)

D, =e41Q+e30 .. — 3. +p3T

D,

Substitution of expressions (14) into the equation of electrostatics (7) yields

@2
- (171 + C_4> AIXI — M3X1 2z + elAIQ,Z + e3@,zzz = _pSTz (15)
44
It follows from Egs. (5) and (9) that for plane stress
0. -y o_, Py (16)
C33 €33 €33

Eq. (16) can be used to eliminate the potential function @ from the equilibrium and electrostatics equations
(12) and (15); the resulting two equations, together with Eq. (16), can be rearranged and expressed in the
following form:

Algz(s]}(l’z—‘rézT (17)
@,zz = 752%1,2 =+ 53T (18)
Al%l + :ule,zz = ilT,Z (19)
in which
5 = c13e3 — C33261 , 5y = c1301 +e3
C11C33 — €13 C33
£ = 044[(0331?3 +e3fs)(cries — C%3) — (c13e3 — c3e1)(c33f) — C13ﬂ3)]
.

c33(1ycaa + €3)(cricss — cfy)
enf —ci3f; By — c13&
bH="—7~ G=—""T—"-

2 ) >
C11C33 — C3 C33

2 _ caul(cssns + €3)(crieas — ) + (cizes — 63361)2]
633(’71644 + ei)(011033 — 0%3)
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3.2. Solution I1

For a complementary solution to the piezoelastic problem (corresponding to zero thermal loading), the
displacement and electric force components are written in terms of potential functions ¢ and y, as

u =~k =—k ¢ L w =k
(21)
X2,
Ey=—t  Eo=-  E=-p.
The corresponding strains, stresses and electric displacements are
_ —kl(b’rrz, oy = —kl (d)mz + (l’),ZQZ )7 e, = sz]d)(Z, = _2k1 (¢,rﬁz _ ¢292> (22)
r r r r
and
b, <f> :
Oy = _k1c11¢,rrz _kICIZ( - 99 +k2€1’;A](,b +el)/22
b, <f> :
Opy = _k1012¢,rrz — ke < p 00 + ke A1, + €1 ) (23)
d) r0z ¢ 0z
0= —k - — =
0ro 1(en Clz)< . 2
and also
el 12,0 ,
D, =—\m+ 4/% Dy m+a;jf7 D. = (—kiey + kae3) 1. — 031 (24)

In this case the equations of equilibrium (6) and electrostatics (7) are satisfied providing the potential
functions ¢ and y, satisfy the equations

MM +ild.) =0 (25)

Y= —M¢ (26)

and k; and k, have the values

C13€3 — C33€] Ci1€3 — C13€]
=0, == (27)
C11C33 — €13 C11C33 — C13

by =

The general solution for the piezothermoelastic response of the plate is obtained through superposition
of solutions I and II; i.e.,

Q
_Qr_k1¢,rz7 u(?:TH_k ¢0Z uz:@‘z+k2Al¢
(28)
(]
Er = _dj.ra EH = __ﬁa Ez = _dj‘z
2 ;

where the total electric potential is given by

Q= +1 (29)
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4. Application

Next we examine the response of a plate of radius ¢ and depth b, subject to axisymmetric heating on one
face, zero temperature rise on the opposite face, and thermal insulation on the cylindrical edge. The thermal
boundary conditions in this case are

T=0 onz=0 (30)
T.+hT =hQ(r) onz=» (31)
T,=0 onr=a (32)

where /1 denotes the relative surface heat transfer coefficient, and Q(r) is a prescribed function. The tem-
perature field that satisfies conditions (30)—(32) can be expressed as (Ashida and Tauchert, 2000)

T(r,z) = To(z) + T1(r,2) (33)
where
.z R sinh (o,z/ )
T() —A()B, T] = ;AHJO(OCHV)W (34)
in which
_ hbQ, _ 2hQ,
A =7 +hb’ 4=7 + a, coth (a,b/ ) (33)
0= [rona 0= [0 (36)
0= 0r r) dr, "= T (o) Or rJo(o,r) dr

and o, are the roots of the equation
Ji(aa) =0 (37)
The piezothermoelastic response to this temperature field is investigated for two different edge condi-
tions, namely radially constrained (Case A) and traction-free (Case B).

4.1. Case A. Radially constrained edge

Consider first the situation in which the cylindrical edge (» = a) of the plate is constrained against radial
displacement, and free of electric charge. The top and bottom faces (z =0,b) are also assumed to be
electrically charge free. The boundary conditions for this case are expressed as

u,=0 onr=a (38)
D,=0 onr=a (39)
D.=0 onz=0,b (40)

In the case of the temperature distribution 7y(z) = Ay(z/b) it easily can be shown that the solution to the
plane-stress equations of equilibrium and electrostatics, together with boundary conditions (38)—(40), is
given by

ZZ

= = A
Uy 0; u; 1 02b

(41)
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z
Oy = 099 = (CI3V1 + ey, — ﬁl)AOZ (42)
2
@ = 7,40 2 (43)
in which
_ Pz —esps _cups + fies
L 20 2= T 2 (45)
€333 + €3 C33M3 + €3

The solution corresponding to the temperature distribution 7 (r,z) given by Eq. (34) is obtained using
the potential functions introduced in Section 3. For the piezothermoelastic solution (Solution I), the po-
tential function y, that satisfies Eq. (19) is

- cosh (a,z/ 1)
n=>y D = 4
X1 ; n,_]()(fxn}") Slnh(%nb/i) ( 6)
where
D, = Lo (47
(W2 = 2%,
Then potential functions Q and © satisfying Egs. (17) and (18), respectively, become
- sinh (o,z/ 1)
Q=) EJo(ot,r) ————F= 4
; Jo(aar) sinh (et,b/7) (48)
- sinh (o,z/ 1)
=) F —_— 4
@ ”Z:I: nJO(anr) Slnh(anb/i) ( 9)
where
1 kl O(,,Dn /12 k2 “nDn
En = _a_gl ( //L + €2An)a El = OC_% ( - /1 + é}An (50)

For the piezoelastic solution (Solution II), the potential function ¢ representing a general solution to Eq.
(25) is given by

e cosh (ot,z/ 1) sinh (o,z/ )
¢ =D () [B" sinh (,b/) T <" cosh(oc,,b/u)] (51)

n=1

in which case the solution to Eq. (26) for y; is

oy cosh (o,z/ 1) sinh (o,z/ 1)
7= 2 ko) [B" sinh (z,b/p) " cosh(ocnb/m] .

Here B, and C, are arbitrary constants to be determined later through application of the mechanical and
electric boundary conditions. Substitution of Egs. (46)—(52) into Egs. (9), (11), (14), (21), (23), (24) and (29),
and superposition of the results for the two solutions (I and II), yields the following expressions for the
displacements, stresses, electric potential and electric displacements induced by 7:
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sinh(ac,,z/i) ki 5[ sinh(o,z/u) cosh (a,z/ )
ZJI ) { " sinh (o,b /) +; g {B,, sinh (ot,b/ 1) +Ca cosh (oc,,b/u)} } (53)

e o,  cosh(o,z/2) 5[ cosh(o,z/u) sinh (o,z/ 1)
= Zjo(anr){ TF" sinh (a,b/7) a2, {B" sinh (o,,b/ 1) + G cosh (anb/u)} } (54)

0 c130%F,  ea,D, | Jy (o,
Op = Z |:{ |: - Cl]OCiEn + 13)»; + IT - ﬁlAn J()(OC,,}") + (cll - CIZ)anEny}
1 i

n=

sinh (et,z/4) o
XW—’_ . {(C“kl _c”kz—i_el)anJO(an ) (011 _CIZ)kl

sinh (o,z/ ) cosh (o,z/p) 1]
8 {B" sinh (2,6/1) | " cosh (s,b /1) }

(55)

o0 o2F, eoc,, N Ji(omr
oo = Z[{ [— cn’E, + 3A +- % :|J0(anr) — (en — en)ouk, l(r )}

n=1

sinh (o,z/7) o2 Ji (a7
X w +-= {(CIZkl — ci3ky + ey)oJo (o) + (et — ci2)ky 1) }

sinh (o,z/ ) cosh (a,z/ )
X {B” sinh (2,6/1) | " cosh (s,b/ 1) H

and

s
I
8
.
&
—
S

cosh(a,z/2)  ,[, cosh(o,z/u) sinh (o,z/ 1)
" sinh (a,b/2) e {B" sinh (o,,b/ 1) + G cosh(anb/u)} }

a2\ cosh(a,z/A) 5[ cosh(a,z/u) sinh (o,z/ )
D= ( c) Za”‘ll { " sinh (a,b/ 1) +o [B" sinh (a,b/ 1) + G cosh(oc”b/,u)] } (58)

n=1

RS s e3ocF 30,0, sinh (o,z/ )
DZ_ZJ"(“””)H % En = 7 +p3A”] sinh (4,5/7)

sinh (o,z/ 1) cosh (o,,z/ )
sinh (a,b/p) <" cosh(ocnb/u)} }

A simplified expression for ¢, is obtained when Egs. (47) and (50) for D, and F, are substituted into Eq.
(55), in which case

o
—+ ﬁ (elkl — €3k2 — 113) |:B,, (59)

Ci1 —C12 - sinh((x,,z//l) kl ) sinh (OC,,Z/,M)
7 n nEn-ii_ Bn-— 60
’ r Zjl(a : [a sinh (o,0/2) u % sinh (o0,b/ 1) (60)

The previously undetermined coefficients B, and C, are found by applying boundary conditions (38)-
(40). Conditions (38) and (39) are found to be satisfied identically, whereas condition (40) leads to the result

_ elo(iE” — e3aiEl/;Lz + 1’]30(,1D,,//1 _pSAn

B"l )
(erky — esky — n3)o /1

C,=0 (61)
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Complete expressions for the displacements, stresses, electric potential and electric displacements in-
duced by temperature 7 then are obtained by summing the respective response quantities associated with T
and 7.

4.2. Case B. Traction-free edge

When the plate is free of traction and electric charge, the relevant boundary conditions are

6,=0 onr=a (62)
D, =0 onr=a (63)
D.=0 onz=0,b (64)

To obtain the response to the temperature distribution 7y(z) = 4o(z/b), we assume expressions for the
displacements and the electric potential of the following forms:
. 2 2 2

r zZ
B w— Bl t+CI+E,  ®=D 65
=By, 09 T Cogp T E0 %% (65)

in which By, Cy, Dy and E, are constants. The corresponding stresses and electric displacements are

z

0, = app = [(c11 + €12)Bo + ¢13Co + €1 Dy — /31140]5 (66)

D, =0, D. = [2e1By + e3Cy — 13Dy +p3Ao]g (67)
Boundary conditions (62)—(64) require that

(e + c12)Bo + c13Co + e1Dy = f14o (68)
and

2e1By + e3Cy — ;D9 = —p34o (69)
whereas the plane-stress condition ¢,, = 0 implies

2c13B0 + c33Co + e3Dy = B340 (70)

Eqgs. (68)—(70) are used to compute By, Cy and D,; constant Ej, which establishes the location of zero
transverse displacement, may be selected arbitrarily.

For the response induced by temperature 7i(r,z), the solution derived for Case A (Egs. (53)—(59)) is
applicable here also. Boundary conditions (62)—(64) are satisfied when B, and C, are given by Eq. (61).
Superposition of response quantities associated with temperatures 7, and 7; then leads to the following
results:

sinh(oc,,z/i) ki, sinh(o,z/p)
, =B (o) | = oy 2y P 2 ) 71
“b *Z 1%aT, { Erinh(o,b/7) T P Sinh (ab/ ) (1)
r z? - o, . cosh(a,z/1) , cosh (o,z/p)
= —By— Z +E 2 —— el 72
u: = ~Bogp + Cogpt °+;J°(°‘”r)[/1 Sinh (b)) "sinh(oc,lb/,u)] (72)

—cn sinh (w,z/2) ki, sinh(oz/p)
ZJ] ol [“" "sinh(a,b/2) g 5" sinh (b)) (73)
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J1 (o) } sinh (a,,z/ 1)

< c1302F,  ea,D,
000 = Z[{ [_ ClZ“ﬁEn + 1312’1 +- . BlAn:|J0(anr) — (e — c12)o,E,

“— A r sinh (ot,b/ 1)
+ %ﬁ { (cr2kr — c13ky + e1) oo (o) + (11 — c12)ky i (f"r) }Bn ;IEEEZ:Z;Z))} (74)
D, - (111 ; —) fj./ (o) [Dn e ﬁ] (76)
D, = nf;Jo(oc,,r) [( — e, + 632’2;5 - ;73&),: Dr s py n> —;IEE ((:::Z%))

3
n

K

sinh (o,z/ )
In _ — )R, =l E)
+ p (ertky — eskr — 13)B, Sth (2,5 1) (77)

5. Numerical results

As an illustrative example, the ambient temperature Q(r) on the face z = b of the plate is taken to have a
radial distribution described by

1”2 7’4

Q(r)=T0(1—2;+;) (78)

The plate material is considered to be cadmium selenide, having the following properties (Berlincourt
et al., 1963):

¢ =74.1 x 10° Nm2, ¢ =452 x 10° Nm2, ci3 =39.3 x 10° Nm2,

c33=83.6x10° Nm™2, ¢y =132x10° Nm7?,

B, =0.621 x 10° NK'm~2, By =0.551 x 10° NK'm~2,

e; = —0.160 Cm 2, e =0.347 Cm™2, es = —0.138 Cm ™2,

n =82.6x 10712 C*N"'m~2, N, =903 x 1072 C*N"'m™2,  p3=-294x10°CK 'm?

Jh=I:=9WK ' 'm™ 4 =44x10°K",

Y, =428 x 10° Nm 2, G.=132x10° Nm7?, v, = 0.480, V. = 0.245,

(79)

where, in addition to quantities defined earlier, ,, ¥,, G,., v,4 and v,. denote, respectively, thermal expansion
coefficient, Young’s modulus, shear modulus and Poisson ratios.
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The following dimensionless quantities are introduced for convenience in the presentation of numerical
results:

_ b = T
b=2, F=_, z=% B=ah, T=-,
a a a T
— Ml — 61/ x ’/]1 ¢ B Dl
i = Oif = % > =AYV o i = T
aarTO ! oy Yr 7—'0 Yr ao, TO l V anlarz—b (80)
-2 A o - Y _ G
T=2 a=2 Y=, G=-2,
Lor o Y, Y,
Ei* €; M3 — V&

Results obtained using the present formulation for a plate having a radially-constrained edge (Case A)
were found to be in complete agreement with those computed using the solution procedure given earlier
(Ashida and Tauchert, 2000). As previously noted, the earlier formulation was limited to plates having a
constrained cylindrical edge. Since results for that case were provided in the earlier paper, only results for
the traction-free plate (Case B) are reported here. All response quantities have been calculated by retaining
the first 50 terms in the corresponding infinite series.

Fig. 1 shows the radial variation of the nondimensionalized surface temperature [T)._; for plates of various
thickness-to-radius ratios b, in the case of Biot number B; = 1. The corresponding distributions of radial
displacement, transverse displacement difference between the plate surfaces, radial and circumferential
stresses, electric potential difference, and radial electric displacements, are given in Figs. 26, respectively. The
maximum (absolute) value of each response quantity increases with increasing plate thickness. Maximum
values of surface temperature, transverse displacement difference, radial and circumferential stresses, and

0.3
" B,=1

—_ b=0.5
= 5=04

02k b=0.3

b=02
b=0.1
0.1+
0 t t t }
0 0.2 0.4 0.6 0.8 1

r

Fig. 1. Distributions of surface temperature for different values of thickness-to-radius ratio b.
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0.15

0.14

0.05+

Fig. 2. Distributions of radial displacement for different values of thickness-to-radius ratio b.

I 0.021

N 0.014

Fig. 3. Distributions of transverse displacement difference between the plate surfaces for different values of thickness-to-radius ratio b.

electric potential difference occur at the center of the plate; the radial displacement is maximum at the plate
edge; radial electric displacements at the plate surfaces are greatest at approximately 7 = 0.52.

Figs. 7-9 illustrate the effects of variations in material properties on the stresses at the center of the
heated surface of the plate. The plate considered in this case has a thickness-to-radius ratio » = 0.2, and the
Biot number is B; = 1. A parameter y (0.01 <7< 100) is applied to a particular material property to il-
lustrate the effect of varying that property when all other properties have the values given in Eq. (80). The
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0.08
" B;=1
N /’_\
E
o 0041 e
. V4 —_
= b=0.3 // -
o Y
0_
-0.04
[6 rr] z=b
b=0.5 ————1[Ggo0l;-5
-0.08 : - - ;
0 02 04 06 08 _ 1
Tr

Fig. 5. Distributions of electric potential difference between the plate surfaces for different values of thickness-to-radius ratio b.

effects of having different dimensionless values of thermal expansion coefficient @, thermal conductivity
ratio 4, and pyroelectric coefficient 5, are shown in Fig. 7. Fig. 8 shows the influence of different Poisson
ratios v,y and v,.. over the range (}v,9,7v,.) <0.5, shear modulus variation over the range yG <0.5, and
variation of Young’s modulus ratio Y. The effects of differences in dielectric permittivity 7 and piezoelectric
coefficients ¢;, e; and e, are shown in Fig. 9. It can be seen that the stress amplitudes are affected signif-
icantly by @, A , D3 71, @ and @;, but are relatively less sensitive to variations in v,g, v,., G, Y and &, over the
range of y considered.



4982 F. Ashida, T.R. Tauchert | International Journal of Solids and Structures 38 (2001) 49694985

0.005
(=]
I
S0
()
i
I
— -0.005+
(@)
-0.011
-0.015 t : } ;
0 0.2 0.4 0.6 08 _ 1
T

0
10
Ll]
=
o -0.02+
o
D
o
+ 0041
o
-0.06
-0.08+
-0.1 ‘
0.01 0.1 1 10 100

. L . . )
Fig. 7. Effect of variations in material properties o, A~ and p; upon stresses.

Figs. 10-12 illustrate the effects of variations of these same material properties on the difference in
electric potential between the plate surfaces. Note that the amplitude of the potential difference is par-
ticularly sensitive to variations in @, p; and 7, but relatively insensitive to variations in the other prop-
erties.

6. Concluding remarks

The plane-stress piezothermoelastic formulation presented here is more general than the authors’
earlier formulation (2000), in that it is applicable in the case of traction-free as well as constrained edge
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Fig. 9. Effect of variations in material properties e, €;, e; and 77 upon stresses.

conditions. Results for the radially constrained plate are in complete agreement with those presented
earlier.

From a computational viewpoint, application of the plane-stress solution is far simpler than that of the
three-dimensional solution procedure developed by Ashida and Tauchert (1998). As indicated in the au-
thor’s previous study (2000), the plane-stress approximation generally yields results that are in good
agreement with the corresponding exact three-dimensional solution, even in the case of plates with
thickness equal to the radius.
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